Adversarial Reconstruction-Classification Networks for PolSAR Image Classification
نویسندگان
چکیده
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملAdversarial Classification on Social Networks
The spread of unwanted or malicious content through social media has become a major challenge. Traditional examples of this include social network spam, but an important new concern is the propagation of fake news through social media. A common approach for mitigating this problem is by using standard statistical classification to distinguish malicious (e.g., fake news) instances from benign (e...
متن کاملPolSAR Image Classification Based on Deep Convolutional Neural Network
For introducing the advantages of feature learning and multilayer network in the interpretation of Polarimetric synthetic aperture radar (PolSAR) image, a classification algorithm based on deep convolutional neural network is proposed, and is used for PolSAR image classification. Firstly, a special convolutional neural network (CNN) for PolSAR image is constructed, secondly, a large number of P...
متن کاملPolSAR image classification based on Laplacian Eigenmaps and superpixels
This paper proposes a method of polarimetric synthetic aperture radar (PolSAR) image classification using improved superpixel segmentation and manifold learning. Firstly, a 27-dimension polarimetric feature space is extracted by simple arithmetic operations of polarimetric parameters and polarimetric target decomposition. Secondly, Laplacian Eigenmap (LE) algorithm is used to reduce the dimensi...
متن کاملHierarchical semantic model and scattering mechanism based PolSAR image classification
For polarimetric SAR (PolSAR) image classification, it is a challenge to classify the aggregated terrain types, such as the urban area, into semantic homogenous regions due to sharp bright-dark variations in intensity. The aggregated terrain type is formulated by the similar ground objects aggregated together. In this paper, a polarimetric hierarchical semantic model (PHSM) is firstly proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2019
ISSN: 2072-4292
DOI: 10.3390/rs11040415